
ALGORITHMS

DESIGN TECHNIQUES AND
 ANALYSIS

M. H. Alsuwaiyel

Information & Computer Science Department

KFUPM

July, 1999

52 Basic Concepts in Algorithmic Analysis

Algorithm 1.13 first

Input: A positive integer n and an array A[1..n] with A[j] = j, 1 ≤ j ≤ n.

Output:
∑n

j=1
A[j].

1. sum← 0
2. for j ← 1 to n
3. sum← sum + A[j]
4. end for
5. return sum

Algorithm 1.14 second

Input: A positive integer n.

Output:
∑n

j=1
j.

1. sum← 0
2. for j ← 1 to n
3. sum← sum + j
4. end for
5. return sum

elementary operations performed by both algorithms is the same.

1.15 Exercises

1.1. Let A[1..60] = 11, 12, . . . , 70. How many comparisons are performed by
Algorithm binarysearch when searching for the following values of x?
(a) 33. (b) 7. (c) 70. (d) 77.

1.2. Let A[1..2000] = 1, 2, . . . , 2000. How many comparisons are performed
by Algorithm binarysearch when searching for the following values of
x?
(a) −3. (b) 1. (c) 1000. (d) 4000.

1.3. Draw the decision tree for the binary search algorithm with an input of
(a) 12 elements. (b) 17 elements. (c) 25 elements. (d) 35 elements.

1.4. Illustrate the operation of Algorithm selectionsort on the array

45 33 24 45 12 12 24 12 .

How many comparisons are performed by the algorithm?

1.5. Consider modifying Algorithm selectionsort as shown in Algorithm

Exercises 53

modselectionsort.

Algorithm 1.15 modselectionsort

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1
2. for j← i + 1 to n
3. if A[j] < A[i] then interchange A[i] and A[j]
4. end for
5. end for

(a) What is the minimum number of element assignments performed by
Algorithm modselectionsort? When is this minimum achieved?

(b) What is the maximum number of element assignments performed
by Algorithm modselectionsort? Note that each interchange is
implemented using three element assignments. When is this maxi-
mum achieved?

1.6. Illustrate the operation of Algorithm insertionsort on the array

30 12 13 13 44 12 25 13 .

How many comparisons are performed by the algorithm?

1.7. How many comparisons are performed by Algorithm insertionsort

when presented with the input

4 3 12 5 6 7 2 9 ?

1.8. Prove Observation 1.4.

1.9. Which algorithm is more efficient: Algorithm insertionsort or Algo-
rithm selectionsort? What if the input array consists of very large
records? Explain.

1.10. Illustrate the operation of Algorithm bottomupsort on the array

A[1..16] = 11 12 1 5 15 3 4 10 7 2 16 9 8 14 13 6 .

How many comparisons are performed by the algorithm?

1.11. Illustrate the operation of Algorithm bottomupsort on the array

A[1..11] = 2 17 19 5 13 11 4 8 15 12 7 .

How many comparisons are performed by the algorithm?

54 Basic Concepts in Algorithmic Analysis

1.12. Give an array A[1..8] of integers on which Algorithm bottomupsort

performs

(a) the minimum number of element comparisons.

(b) the maximum number of element comparisons.

1.13. Fill in the blanks with either true or false:

f(n) g(n) f = O(g) f = Ω(g) f = Θ(g)

2n3 + 3n 100n2 + 2n + 100

50n + log n 10n + log log n

50n log n 10n log log n

log n log2 n

n! 5n

1.14. Express the following functions in terms of the Θ-notation.

(a) 2n + 3 log100 n.

(b) 7n3 + 1000n log n + 3n.

(c) 3n1.5 + (
√

n)3 log n.

(d) 2n + 100n + n!.

1.15. Express the following functions in terms of the Θ-notation.

(a) 18n3 + log n8.

(b) (n3 + n)/(n + 5).

(c) log2 n +
√

n + log log n.

(d) n!/2n + nn/2.

1.16. Consider the sorting algorithm shown below, which is called bubble-

sort.

Algorithm 1.16 bubblesort

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. i← 1; sorted← false
2. while i ≤ n− 1 and not sorted
3. sorted← true
4. for j← n downto i + 1
5. if A[j] < A[j − 1] then
6. interchange A[j] and A[j − 1]
7. sorted← false
8. end if
9. end for

10. i← i + 1
11. end while

Exercises 55

(a) What is the minimum number of element comparisons performed
by the algorithm? When is this minimum achieved?

(b) What is the maximum number of element comparisons performed
by the algorithm? When is this maximum achieved?

(c) What is the minimum number of element assignments performed
by the algorithm? When is this minimum achieved?

(d) What is the maximum number of element assignments performed
by the algorithm? When is this maximum achieved?

(e) Express the running time of Algorithm bubblesort in terms of the
O and Ω notations.

(f) Can the running time of the algorithm be expressed in terms of the
Θ-notation? Explain.

1.17. Find two monotonically increasing functions f(n) and g(n) such that
f(n) 6= O(g(n)) and g(n) 6= O(f(n)).

1.18. Is x = O(x sin x)? Use the definition of the O-notation to prove your
answer.

1.19. Prove that
∑n

j=1
jk is O(nk+1) and Ω(nk+1), where k is a positive inte-

ger. Conclude that it is Θ(nk+1).

1.20. Let f(n) = {1/n + 1/n2 + 1/n3 + . . .}. Express f(n) in terms of the
Θ-notation. (Hint: Find a recursive definition of f(n)).

1.21. Show that n100 = O(2n), but 2n 6= O(n100).

1.22. Show that 2n is not Θ(3n).

1.23. Is n! = Θ(nn)? Prove your answer.

1.24. Is 2n2

= Θ(2n3

)? Prove your answer.

1.25. Carefully explain the difference between O(1) and Θ(1).

1.26. Is the function blog nc! O(n), Ω(n), Θ(n)? Prove your answer.

1.27. Can we use the ≺ relation described in Sec. 1.8.6 to compare the order
of growth of n2 and 100n2? Explain.

1.28. Use the ≺ relation to order the following functions by growth rate:

n1/100,
√

n, log n100, n log n, 5, log log n, log2 n, (
√

n)n, (1/2)n, 2n2

, n!.

1.29. Consider the following problem. Given an array A[1..n] of integers, test
each element a in A to see whether it is even or odd. If a is even, then
leave it; otherwise multiply it by 2.

(a) Which one of the O and Θ notations is more appropriate to measure
the number of multiplications? Explain.

(b) Which one of the O and Θ notations is more appropriate to measure
the number of element tests? Explain.

56 Basic Concepts in Algorithmic Analysis

1.30. Give a more efficient algorithm than the one given in Example 1.25.
What is the time complexity of your algorithm?

1.31. Consider Algorithm count4 whose input is a positive integer n.

Algorithm 1.17 count4

1. comment: Exercise 1.31

2. count← 0
3. for i← 1 to blog nc
4. for j← i to i + 5
5. for k← 1 to i2

6. count← count + 1
7. end for
8. end for
9. end for

(a) How many times Step 6 is executed?

(b) Which one of the O and Θ notations is more appropriate to express
the time complexity of the algorithm? Explain.

(c) What is the time complexity of the algorithm?

1.32. Consider Algorithm count5 whose input is a positive integer n.

Algorithm 1.18 count5

1. comment: Exercise 1.32

2. count← 0
3. for i← 1 to n
4. j←bn/2c
5. while j ≥ 1
6. count← count + 1
7. if j is odd then j← 0 else j← j/2
8. end while
9. end for

(a) What is the maximum number of times Step 6 is executed when n
is a power of 2?

(b) What is the maximum number of times Step 6 is executed when n
is a power of 3?

(c) What is the time complexity of the algorithm expressed in the O-
notation?

(d) What is the time complexity of the algorithm expressed in the Ω-
notation?

Exercises 57

(e) Which one of the O and Θ notations is more appropriate to express
the time complexity of the algorithm?

1.33. Consider Algorithm count6 whose input is a positive integer n.

Algorithm 1.19 count6

1. comment: Exercise 1.33

2. count← 0
3. for i← 1 to n
4. j←bn/3c
5. while j ≥ 1
6. for k← 1 to i
7. count← count + 1
8. end for
9. if j is even then j← 0 else j←bj/3c

10. end while
11. end for

(a) What is the maximum number of times Step 7 is executed when n
is a power of 2?

(b) What is the maximum number of times Step 7 is executed when n
is a power of 3?

(c) What is the time complexity of the algorithm expressed in the O-
notation?

(d) What is the time complexity of the algorithm expressed in the Ω-
notation?

(e) Which one of the O and Θ notations is more appropriate to express
the time complexity of the algorithm?

1.34. Write an algorithm to find the maximum and minimum of a sequence of
n integers stored in array A[1..n] such that its time complexity is

(a) O(n).

(b) Ω(n log n).

1.35. Let A[1..n] be an array of integers, where n > 2. Give an O(1) time
algorithm to find an element in A that is neither the maximum nor
the minimum.

1.36. Consider the element uniqueness problem: Given a set of integers, de-
termine whether two of them are equal. Give an efficient algorithm to
solve this problem. Assume that the integers are stored in array A[1..n].
What is the time complexity of your algorithm?

58 Basic Concepts in Algorithmic Analysis

1.37. Give an algorithm that evaluates an input polynomial

anxn + an−1x
n−1 + . . . + a1x + a0

for a given value of x in time

(a) Ω(n2).

(b) O(n).

1.38. Let S be a set of n positive integers, where n is even. Give an efficient
algorithm to partition S into two subsets S1 and S2 of n/2 elements each
with the property that the difference between the sum of the elements
in S1 and the sum of the elements in S2 is maximum. What is the time
complexity of your algorithm?

1.39. Suppose we change the word “maximum” to “minimum” in Exercise 1.38.
Give an algorithm to solve the modified problem. Compare the time
complexity of your algorithm with that obtained in Exercise 1.38.

1.40. Let m and n be two positive integers. The greatest common divisor of m
and n, denoted by gcd(m, n), is the largest integer that divides both m
and n. For example gcd(12, 18) = 6. Consider Algorithm euclid shown
below, to compute gcd(m, n).

Algorithm 1.20 euclid

Input: Two positive integers m and n.

Output: gcd(m, n).

1. comment: Exercise 1.40

2. repeat
3. r← n mod m
4. n←m
5. m← r
6. until r = 0
7. return n

(a) Does it matter if in the first call gcd(m, n) it happens that n < m?
Explain.

(b) Prove the correctness of Algorithm euclid. (Hint: Make use of
the following theorem: If r divides both m and n, then r divides
m− n).

(c) Show that the running time of Algorithm euclid is maximum if
m and n are two consecutive numbers in the Fibonacci sequence
defined by

f1 = f2 = 1; fn = fn−1 + fn−2 for n > 2.

Bibliographic notes 59

(d) Analyze the running time of Algorithm euclid in terms of n, as-
suming that n ≥ m.

(e) Can the time complexity of Algorithm euclid be expressed using
the Θ-notation? Explain.

1.41. Find the time complexity of Algorithm euclid discussed in Exercise 1.40
measured in terms of the input size. Is it logarithmic, linear, exponen-
tial? Explain.

1.42. Prove that for any constant c > 0, (log n)c = o(n).

1.43. Show that any exponential function grows faster than any polynomial
function by proving that for any constants c and d greater than 1,

nc = o(dn).

1.16 Bibliographic notes

There are several books on the design and analysis of algorithms. These

include, in alphabetical order, Aho, Hopcroft, and Ullman (1974), Baase

(1987), Brassard and Bratley (1988), Brassard and Bratley (1996), Dromey

(1982), Horowitz and Sahni (1978), Hu (1982), Knuth (1968, 1969, 1973),

Manber (1989), Mehlhorn (1984), Moret and Shapiro (1991), Purdom and

Brown (1985), Reingold, Nievergelt, and Deo (1977), Sedgewick (1983) and

Wilf (1986). For a more popular account of algorithms, see Knuth (1977),

Lewis and Papadimitriou (1978) and the two Turing Award Lectures of

Karp (1986) and Tarjan (1987). Some of the more practical aspects of

algorithm design are discussed in Bentley (1982) and Gonnet (1984). Knuth

(1973) discusses in detail the sorting algorithms covered in this chapter.

He gives step-counting analyses. The asymptotic notation was used in

mathematics before the emergence of the field of algorithms. Knuth (1976)

gives an account of its history. This article discusses the Ω and Θ notations

and their proper usage and is an attempt to standardize these notations.

Purdom and Brown (1985) presents a comprehensive treatment of advanced

techniques for analyzing algorithms with numerous examples. The main

mathematical aspects of the analysis of algorithms can be found in Greene

and Knuth (1981). Weide (1977) provides a survey of both elementary

and advanced analysis techniques. Hofri (1987) discusses the average-case

analysis of algorithms in detail.

98 Mathematical Preliminaries

2.9 Exercises

2.1. Let A and B be two sets. Prove the following properties, which are
known as De Morgan’s laws.

(a) A ∪B = A ∩B.

(b) A ∩B = A ∪B.

2.2. Let A, B and C be finite sets.

(a) Prove the principle of inclusion-exclusion for two sets:

|A ∪B| = |A|+ |B| − |A ∩B|.

(b) Prove the principle of inclusion-exclusion for three sets:

|A ∪B ∪ C| = |A|+|B|+|C|−|A ∩B|−|A ∩ C|−|B ∩ C|+|A ∩B ∩ C|.

2.3. Show that if a relation R on a set A is transitive and irreflexive, then R
is asymmetric.

2.4. Let R be a relation on a set A. Then, R2 is defined as {(a, b) | (a, c) ∈
R and (c, b) ∈ R for some c ∈ A}. Show that if R is symmetric, then R2

is also symmetric.

2.5. Let R be a nonempty relation on a set A. Show that if R is symmetric
and transitive, then R is not irreflexive.

2.6. Let A be a finite set and P (A) the power set of A. Define the relation
R on the set P (A) by (X, Y) ∈ R if and only if X ⊆ Y . Show that R is
a partial order.

2.7. Let A = {1, 2, 3, 4, 5} and B = A × A. Define the relation R on the set
B by {((x, y), (w, z)) ∈ B} if and only if xz = yw.

(a) Show that R is an equivalence relation.

(b) Find the equivalence classes induced by R.

2.8. Given the sets A and B and the function f from A to B, determine
whether f is one to one, onto B or both (i.e. a bijection).

(a) A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4} and
f ={(1, 2), (2, 3), (3, 4), (4, 1), (5, 2)}.

(b) A is the set of integers, B is the set of even integers and f(n) = 2n.

(c) A = B is the set of integers, and f(n) = n2.

(d) A = B is the set of real numbers with 0 excluded and f(x) = 1/x.

(e) A = B is the set of real numbers and f(x) = |x |.

Exercises 99

2.9. A real number r is called rational if r = p/q, for some integers p and
q, otherwise it is called irrational . The numbers 0.25, 1.3333333 . . . are
rational, while π and

√
p, for any prime number p, are irrational. Use

the proof by contradiction method to prove that
√

7 is irrational.

2.10. Prove that for any positive integer n

blog nc+ 1 = dlog(n + 1)e.

2.11. Give a counterexample to disprove the assertion given in Example 2.9.

2.12. Use mathematical induction to show that n! > 2n for n ≥ 4.

2.13. Use mathematical induction to show that a tree with n vertices has
exactly n− 1 edges.

2.14. Prove that φn = φn−1 + φn−2 for all n ≥ 2, where φ is the golden ratio
(see Example 2.11).

2.15. Prove that for every positive integer k,
∑n

i=1
ik log i = O(nk+1 log n).

2.16. Show that
n

∑

j=1

j log j = Θ(n2 log n)

(a) using algebraic manipulations.

(b) using the method of approximating summations by integration.

2.17. Show that
n

∑

j=1

log(n/j) = O(n),

(a) using algebraic manipulations.

(b) using the method of approximating summations by integration.

2.18. Solve the following recurrence relations.

(a) f(n) = 3f(n− 1) for n ≥ 1; f(0) = 5.

(b) f(n) = 2f(n− 1) for n ≥ 1; f(0) = 2.

(c) f(n) = 5f(n− 1) for n ≥ 1; f(0) = 1.

2.19. Solve the following recurrence relations.

(a) f(n) = 5f(n− 1)− 6f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 0.

(b) f(n) = 4f(n− 1)− 4f(n− 2) for n ≥ 2; f(0) = 6, f(1) = 8.

(c) f(n) = 6f(n− 1)− 8f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 0.

(d) f(n) = −6f(n− 1)− 9f(n− 2) for n ≥ 2; f(0) = 3, f(1) = −3.

(e) 2f(n) = 7f(n− 1)− 3f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 1.

(f) f(n) = f(n− 2) for n ≥ 2; f(0) = 5, f(1) = −1.

2.20. Solve the following recurrence relations.

100 Mathematical Preliminaries

(a) f(n) = f(n− 1) + n2 for n ≥ 1; f(0) = 0.

(b) f(n) = 2f(n− 1) + n for n ≥ 1; f(0) = 1.

(c) f(n) = 3f(n− 1) + 2n for n ≥ 1; f(0) = 3.

(d) f(n) = 2f(n− 1) + n2 for n ≥ 1; f(0) = 1.

(e) f(n) = 2f(n− 1) + n + 4 for n ≥ 1; f(0) = 4.

(f) f(n) = −2f(n− 1) + 2n − n2 for n ≥ 1; f(0) = 1.

(g) f(n) = nf(n− 1) + 1 for n ≥ 1; f(0) = 1.

2.21. Consider the following recurrence

f(n) = 4f(n/2) + n for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 2.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 2.5.

2.22. Consider the following recurrence

f(n) = 5f(n/3) + n for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 3.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 2.5.

2.23. Consider the following recurrence

f(n) = 9f(n/3) + n2 for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 3.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 2.5.

2.24. Consider the following recurrence

f(n) = 2f(n/4) +
√

n for n ≥ 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22
k

, k ≥ 0.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 2.5.

2.25. Use the substitution method to find an upper bound for the recurrence

f(n) = f(bn/2c) + f(b3n/4c) for n ≥ 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.

Exercises 101

2.26. Use the substitution method to find an upper bound for the recurrence

f(n) = f(bn/4c) + f(b3n/4c) + n for n ≥ 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.

2.27. Use the substitution method to find a lower bound for the recurrence in
Exercise 2.25. Express the solution using the Ω-notation.

2.28. Use the substitution method to find a lower bound for the recurrence in
Exercise 2.26. Express the solution using the Ω-notation.

2.29. Use the substitution method to solve the recurrence

f(n) = 2f(n/2) + n2 for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 2. Express the solution using the
Θ-notation.

2.30. Let
f(n) = f(n/2) + n for n ≥ 2; f(1) = 1,

and
g(n) = 2g(n/2) + 1 for n ≥ 2; g(1) = 1,

where n is a power of 2. Is f(n) = g(n)? Prove your answer.

2.31. Use the change of variable method to solve the recurrence

f(n) = f(n/2) +
√

n for n ≥ 4; f(n) = 2 if n < 4,

where n is assumed to be of the form 22
k

. Find the asymptotic behavior
of the function f(n)

2.32. Use the change of variable method to solve the recurrence

f(n) = 2f(
√

n) + n for n ≥ 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22
k

. Find the asymptotic behavior
of the function f(n)

2.33. Prove that the solution to the recurrence

f(n) = 2f(n/2) + g(n) for n ≥ 2; f(1) = 1

is f(n) = O(n) whenever g(n) = o(n). For example, f(n) = O(n) if
g(n) = n1−ε, 0 < ε < 1.

134 Heaps and the Disjoint Sets Data Structures

nodes in group g is at most

n

F (g)
(F (g) − F (g − 1)) ≤ n.

Since there are at most log∗ n groups (0, 1, . . . , log∗ n−1), it follows that the

number of node charges assigned to all nodes is O(n log∗ n). Combining this

with the O(m log∗ n) charges to the find instructions yields the following

theorem:

Theorem 4.3 Let T (m) denote the running time required to process an

interspersed sequence σ of m union and find operations using union by rank

and path compression. Then T (m) = O(m log∗ n) in the worst case.

Note that for almost all practical purposes, log∗ n ≤ 5. This means that

the running time is O(m) for virtually all practical applications.

4.4 Exercises

4.1. What are the merits and demerits of implementing a priority queue using
an ordered list?

4.2. What are the costs of insert and delete-max operations of a priority
queue that is implemented as a regular queue.

4.3. Which of the following arrays are heaps?

(a) 8 6 4 3 2 . (b) 7 . (c) 9 7 5 6 3 .

(d) 9 4 8 3 2 5 7 . (e) 9 4 7 2 1 6 5 3 .

4.4. Where do the following element keys reside in a heap?
(a) Second largest key. (b) Third largest key. (c) Minimum key.

4.5. Give an efficient algorithm to test whether a given array A[1..n] is a
heap. What is the time complexity of your algorithm?

4.6. Which heap operation is more costly: insertion or deletion? Justify your
answer. Recall that both operations have the same time complexity, that
is, O(log n).

4.7. Let H be the heap shown in Fig. 4.1. Show the heap that results from

(a) deleting the element with key 17.

(b) inserting an element with key 19.

4.8. Show the heap (in both tree and array representation) that results from
deleting the maximum key in the heap shown in Fig. 4.4(e).

Exercises 135

4.9. How fast is it possible to find the minimum key in a max-heap of n
elements?

4.10. Prove or disprove the following claim. Let x and y be two elements in a
heap whose keys are positive integers, and let T be the tree representing
that heap. Let hx and hy be the heights of x and y in T . Then, if x is
greater than y, hx cannot be less than hy. (See Sec. 3.5 for the definition
of node height).

4.11. Illustrate the operation of Algorithm makeheap on the array

3 7 2 1 9 8 6 4 .

4.12. Show the steps of transforming the following array into a heap

1 4 3 2 5 7 6 8 .

4.13. Let A[1..19] be an array of 19 integers, and suppose we apply Algorithm
makeheap on this array.

(a) How many calls to Procedure sift-down will there be? Explain.

(b) What is the maximum number of element interchanges in this case?
Explain.

(c) Give an array of 19 elements that requires the above maximum
number of element interchanges.

4.14. Show how to use Algorithm heapsort to arrange in increasing order the
integers in the array

4 5 2 9 8 7 1 3 .

4.15. Given an array A[1..n] of integers, we can create a heap B[1..n] from A as
follows. Starting from the empty heap, repeatedly insert the elements of
A into B, each time adjusting the current heap, until B contains all the
elements in A. Show that the running time of this algorithm is Θ(n log n)
in the worst case.

4.16. Illustrate the operation of the algorithm in Exercise 4.15 on the array

6 9 2 7 1 8 4 3 .

4.17. Explain the behavior of Algorithm heapsort when the input array is
already sorted in

(a) increasing order.

(b) decreasing order.

4.18. Give an example of a binary search tree with the heap property.

136 Heaps and the Disjoint Sets Data Structures

4.19. Give an algorithm to merge two heaps of the same size into one heap.
What is the time complexity of your algorithm?

4.20. Compute the minimum and maximum number of element comparisons
performed by Algorithm heapsort.

4.21. A d-heap is a generalization of the binary heap discussed in this chapter.
It is represented by an almost-complete d-ary rooted tree for some d ≥ 2.
Rewrite Procedure sift-up for the case of d-heaps. What is its time
complexity?

4.22. Rewrite Procedure sift-down for the case of d-heaps (see Exercise 4.21).
What is its time complexity measured in terms of d and n?

4.23. Give a sequence of n union and find operations that results in a tree of
height Θ(log n) using only the heuristic of union by rank. Assume the
set of elements is {1, 2, . . . , n}.

4.24. Give a sequence of n union and find operations that requires Θ(n log n)
time using only the heuristic of union by rank. Assume the set of ele-
ments is {1, 2, . . . , n}.

4.25. What are the ranks of nodes 3, 4 and 8 in Fig. 4.8(f)?

4.26. Let {1}, {2}, {3}, . . . , {8} be n singleton sets, each represented by a
tree with exactly one node. Use the union-find algorithms with union
by rank and path compression to find the tree representation of the
set resulting from each of the following unions and finds: union(1, 2),
union(3, 4),union(5, 6), union(7, 8), union(1, 3), union(5, 7), find(1),
union(1, 5), find(1).

4.27. Let T be a tree resulting from a sequence of unions and finds using both
the heuristics of union by rank and path compression, and let x be a
node in T . Prove that rank(x) is an upper bound on the height of x.

4.28. Let σ be a sequence of union and find instructions in which all the unions
occur before the finds. Show that the running time is linear if both the
heuristics of union by rank and path compression are used.

4.29. Another heuristic that is similar to union by rank is the weight-balancing

rule. In this heuristic, the action of the operation union(x, y) is to let
the root of the tree with fewer nodes point to the root of the tree with
a larger number of nodes. If both trees have the same number of nodes,
then let y be the parent of x. Compare this heuristic with the union by
rank heuristic.

4.30. Solve Exercise 4.26 using the weight-balancing rule and path compression

(see Exercise 4.29).

4.31. Prove that the weight-balancing rule described in Exercise 4.29 guaran-
tees that the resulting tree is of height O(log n).

4.32. Let T be a tree resulting from a sequence of unions and finds using the

Bibliographic notes 137

heuristics of union by rank and path compression. Let x be the root of
T and y a leaf node in T . Prove that the ranks of the nodes on the path
from y to x form a strictly increasing sequence.

4.33. Prove the observation that if node v is in rank group g > 0, then v can
be moved and charged at most F (g)− F (g − 1) times before it acquires
a parent in a higher group.

4.34. Another possibility for the representation of disjoint sets is by using
linked lists. Each set is represented by a linked list, where the set rep-
resentative is the first element in the list. Each element in the list has
a pointer to the set representative. Initially, one list is created for each
element. The union of two sets is implemented by merging the two sets.
Suppose two sets S1 represented by list L1 and S2 represented by list L2

are to be merged. If the first element in L1 is to be used as the name of
the resulting set, then the pointer to the set name at each element in L2

must be changed so that it points to the first element in L1.

(a) Explain how to improve this representation so that each find oper-
ation takes O(1) time.

(b) Show that the total cost of performing n− 1 unions is Θ(n2) in the
worst case.

4.35. (Refer to Exercise 4.34). Show that if when performing the union of
two sets, the first element in the list with a larger number of elements
is always chosen as the name of the new set, then the total cost of
performing n− 1 unions becomes O(n log n).

4.5 Bibliographic notes

Heaps and the data structures for disjoint sets appear in several books on

algorithms and data structures (see the bibliographic notes of chapters 1

and 3). They are covered in greater depth in Tarjan (1983). Heaps were

first introduced as part of heapsort by Williams (1964). The linear time al-

gorithm for building a heap is due to Floyd (1964). A number of variants of

heaps can be found in Cormen et al. (1992), e.g. binomial heaps, Fibonacci

heaps. A comparative study of many data structures for priority queues can

be found in Jones (1986). The disjoint sets data structure was first studied

by Galler and Fischer (1964) and Fischer (1972). A more detailed analysis

was carried out by Hopcroft and Ullman (1973) and then a more exact

analysis by Tarjan (1975). In this paper, a lower bound that is not linear

was established when both union by rank and path compression are used.

Exercises 155

the majority must be the median, we can scan the sequence to test if the

median is indeed the majority. This method takes Θ(n) time, as the median

can be found in Θ(n) time. As we will see in Sec. 6.5, the hidden constant

in the time complexity of the median finding algorithm is too large, and

the algorithm is fairly complex.

It turns out that there is an elegant solution that uses much fewer

comparisons. We derive this algorithm using induction. The essence of the

algorithm is based on the following observation:

Observation 5.1 If two different elements in the original sequence are

removed, then the majority in the original sequence remains the majority

in the new sequence.

This observation suggests the following procedure for finding an element

that is a candidate for being the majority. Set a counter to zero and let

x = A[1]. Starting from A[2], scan the elements one by one increasing

the counter by one if the current element is equal to x and decreasing

the counter by one if the current element is not equal to x. If all the

elements have been scanned and the counter is greater than zero, then

return x as the candidate. If the counter becomes zero when comparing

x with A[j], 1 < j < n, then call procedure candidate recursively on the

elements A[j +1..n]. Notice that decrementing the counter implements the

idea of throwing two different elements as stated in Observation 5.1. This

method is described more precisely in Algorithm majority. Converting

this recursive algorithm into an iterative one is straightforward, and is left

as an exercise.

5.8 Exercises

5.1. Give a recursive algorithm that computes the nth Fibonacci number fn

defined by

f1 = f2 = 1; fn = fn−1 + fn−2 for n ≥ 3.

5.2. Give an iterative algorithm that computes the nth Fibonacci number fn

defined above.

5.3. Use induction to develop a recursive algorithm for finding the maximum
element in a given sequence A[1..n] of n elements.

156 Induction

Algorithm 5.9 majority

Input: An array A[1..n] of n elements.

Output: The majority element if it exists; otherwise none.

1. c← candidate(1)
2. count← 0
3. for j← 1 to n
4. if A[j] = c then count← count + 1
5. end for
6. if count > bn/2c then return c
7. else return none

Procedure candidate(m)

1. j←m; c←A[m]; count← 1
2. while j < n and count > 0
3. j← j + 1
4. if A[j] = c then count← count + 1
5. else count← count − 1
6. end while
7. if j = n then return c {See Exercises 5.31 and 5.32.}
8. else return candidate(j + 1)

5.4. Use induction to develop a recursive algorithm for finding the average of
n real numbers A[1..n].

5.5. Use induction to develop a recursive algorithm that searches for an ele-
ment x in a given sequence A[1..n] of n elements.

5.6. Derive the running time of Algorithm insertionsortrec.

5.7. Illustrate the operation of Algorithm radixsort on the following se-
quence of eight numbers:

(a) 4567, 2463, 6523, 7461, 4251, 3241, 6492, 7563.

(b) 16543, 25895, 18674, 98256, 91428, 73234, 16597, 73195.

5.8. Express the time complexity of Algorithm radixsort in terms of n when
the input consists of n positive integers in the interval

(a) [1..n].

(b) [1..n2].

(c) [1..2n].

5.9. Let A[1..n] be an array of positive integers in the interval [1..n!]. Which
sorting algorithm do you think is faster: bottomupsort or radixsort?
(See Sec. 1.7).

5.10. What is the time complexity of Algorithm radixsort if arrays are used
instead of linked lists? Explain.

Exercises 157

5.11. Give a recursive version of Algorithm bubblesort given in Exercise 1.16.

5.12. A sorting method known as bucket sort works as follows. Let A[1..n]
be a sequence of n numbers within a reasonable range, say all numbers
are between 1 and m, where m is not too large compared to n. The
numbers are distributed into k buckets, with the first bucket containing
those numbers between 1 and bm/kc, the second bucket containing those
numbers between bm/kc+1 to b2m/kc, and so on. The numbers in each
bucket are then sorted using another sorting algorithm, say Algorithm
insertionsort. Analyze the running time of the algorithm.

5.13. Instead of using another sorting algorithm in Exercies 5.12, design a
recursive version of bucket sort that recursively sorts the numbers in
each bucket. What is the major disadvantage of this recursive version?

5.14. A sorting algorithm is called stable if the order of equal elements is
preserved after sorting. Which of the following sorting algorithms are
stable?

(a)selectionsort (b)insertionsort (c)bubblesort

(d)bottomupsort (e)heapsort (f)radixsort.

5.15. Use induction to solve Exercise 3.7.

5.16. Use induction to solve Exercise 3.8.

5.17. Use Horner’s rule described in Sec. 5.5 to evaluate the following polyno-
mials:

(a) 3x5 + 2x4 + 4x3 + x2 + 2x + 5.

(b) 2x7 + 3x5 + 2x3 + 5x2 + 3x + 7.

5.18. Use Algorithm exprec to compute
(a) 25. (b) 27. (c) 35. (d) 57.

5.19. Solve Exercise 5.18 using Algorithm exp instead of Algorithm exprec.

5.20. Carefully explain why in Algorithm permutations1 when P [j] and P [m]
are interchanged before the recursive call, they must be interchanged
back after the recursive call.

5.21. Carefully explain why in Algorithm permutations2 P [j] must be reset
to 0 after the recursive call.

5.22. Carefully explain why in Algorithm permutations2, when Procedure
perm2 is invoked by the call perm2(m) with m > 0, the array P con-
tains exactly m zeros, and hence the recursive call perm2(m− 1) will be
executed exactly m times.

5.23. Modify Algorithm permutations2 so that the permutations of the num-
bers 1, 2, . . . , n are generated in a reverse order to that produced by
Algorithm permutations2.

158 Induction

5.24. Modify Algorithm permutations2 so that it generates all k-subsets of
the set {1, 2, . . . , n}, 1 ≤ k ≤ n.

5.25. Analyze the time complexity of the modified algorithm in Exercise 5.24.

5.26. Prove the correctness of Algorithm permutations1.

5.27. Prove the correctness of Algorithm permutations2.

5.28. Give an iterative version of Algorithm majority.

5.29. Illustrate the operation of Algorithm majority on the arrays

(a) 5 7 5 4 5 .

(b) 5 7 5 4 8 .

(c) 2 4 1 4 4 4 6 4 .

5.30. Prove Observation 5.1.

5.31. Prove or disprove the following claim. If in Step 7 of Procedure candidate

in Algorithm majority j = n but count = 0 then c is the majority
element.

5.32. Prove or disprove the following claim. If in Step 7 of Procedure candidate

in Algorithm majority j = n and count > 0 then c is the majority
element.

5.33. Let A[1..n] be a sorted array of n integers, and x an integer. Design an
O(n) time algorithm to determine whether there are two elements in A,
if any, whose sum is exactly x.

5.9 Bibliographic notes

The use of induction as a mathematical technique for proving the correct-

ness of algorithms was first developed by Floyd (1967). Recursion has been

studied extensively in algorithm design. See for example the books of Burge

(1975) and Paull (1988). The use of induction as a design technique appears

in Manber (1988). Manber (1989) is a whole book that is mostly devoted

to the induction design technique. Unlike this chapter, induction in that

book encompasses a wide variety of problems and is used in its broad sense

to cover other design techniques like divide and conquer and dynamic pro-

gramming. Radix sort is used by card-sorting machines. In old machines,

the machine did the distribution step and the operator collected the piles

after each pass and combined them into one for the next pass. Horner’s

rule for polynomial evaluation is after the English mathematician W. G.

Horner. Algorithm permutations2 appears in Banachowski, Kreczmar

Exercises 195

duce the time taken by the combine step to Θ(n), then the time complexity

of the algorithm will be Θ(n log n). This can be achieved by a process

called presorting , i.e., the elements in S are sorted by their y-coordinates

once and for all and stored in an array Y . Each time we need to sort T in

the combine step, we only need to extract its elements from Y in Θ(n) time.

This is easy to do since the points in T are those points in Y within distance

δ from the vertical line L. This modification reduces the time required by

the combine step to Θ(n). Thus, the recurrence relation becomes

T (n) =







1 if n = 2

3 if n = 3

2T (n/2) + Θ(n) if n > 3.

The solution to this familiar recurrence is the desired Θ(n log n) bound.

The above discussion implies Algorithm closestpair. In the algorithm,

for a point p, x(p) denotes the x-coordinate of point p.

The following theorem summarizes the main result. Its proof is em-

bedded in the description of the algorithm and the analysis of its running

time.

Theorem 6.7 Given a set S of n points in the plane, Algorithm clos-

estpair finds a pair of points in S with minimum separation in Θ(n log n)

time.

6.10 Exercises

6.1. Modify Algorithm minmax so that it works when n is not a power of 2. Is
the number of comparisons performed by the new algorithm b3n/2− 2c
even if n is not a power of 2? Prove your answer.

6.2. Consider Algorithm slowminmax which is obtained from Algorithm
minmax by replacing the test

if high − low = 1

by the test
if high = low

and making some other changes in the algorithm accordingly. Thus, in
Algorithm slowminmax, the recursion is halted when the size of the
input array is 1. Count the number of comparisons required by this al-
gorithm to find the minimum and maximum of an array A[1..n], where

196 Divide and Conquer

Algorithm 6.7 closestpair

Input: A set S of n points in the plane.

Output: The minimum separation realized by two points in S.

1. Sort The points in S in nondecreasing order of their x-coordinates.
2. Y ←The points in S sorted in nondecreasing order of their y-

coordinates.
3. δ← cp(1, n)

Procedure cp(low , high)

1. if high − low + 1 ≤ 3 then compute δ by a straightforward method.
2. else
3. mid←b(low + high)/2c
4. x0 ← x(S[mid])
5. δl← cp(low ,mid)
6. δr← cp(mid + 1, high)
7. δ← min{δl, δr}
8. k← 0
9. for i← 1 to n {Extract T from Y }

10. if |x(Y [i])− x0| ≤ δ then
11. k← k + 1
12. T [k]← Y [i]
13. end if
14. end for {k is the size of T}
15. δ′← 2δ {Initialize δ′ to any number greater than δ}
16. for i← 1 to k − 1 {Compute δ′}
17. for j← i + 1 to min{i + 7, k}
18. if d(T [i], T [j]) < δ′ then δ′← d(T [i], T [j])
19. end for
20. end for
21. δ← min{δ, δ′}
22. end if
23. return δ

n is a power of 2. Explain why the number of comparisons in this al-
gorithm is greater than that in Algorithm minmax. (Hint: In this case,
the initial condition is C(1) = 0).

6.3. Derive an iterative minimax algorithm that finds both the minimum and
maximum in a set of n elements using only 3n/2− 2 comparisons, where
n is a power of 2.

6.4. Give a divide-and-conquer version of Algorithm linearsearch given in
Sec. 1.3. The algorithm should start by dividing the input elements into
approximately two halves. How much work space is required by the
algorithm?

Exercises 197

6.5. Give a divide-and-conquer algorithm to find the sum of all numbers in
an array A[1..n] of integers. The algorithm should start by dividing the
input elements into approximately two halves. How much work space is
required by the algorithm?

6.6. Let A[1..n] be an array of n integers and x an integer. Derive a divide-
and-conquer algorithm to find the frequency of x in A, i.e., the number
of times x appears in A. What is the time complexity of your algorithm?

6.7. Modify Algorithm binarysearchrec so that it searches for two keys.
In other words, given an array A[1..n] of n elements and two elements x1

and x2, the algorithm should return two integers k1 and k2 representing
the positions of x1 and x2, respectively, in A.

6.8. Design a search algorithm that divides a sorted array into one third
and two thirds instead of two halves as in Algorithm binarysearchrec.
Analyze the time complexity of the algorithm.

6.9. Modify Algorithm binarysearchrec so that it divides the sorted array
into three equal parts instead of two as in Algorithm binarysearchrec.
In each iteration, the algorithm should test the element x to be searched
for against two entries in the array. Analyze the time complexity of the
algorithm.

6.10. Use Algorithm mergesort to sort the array

(a) 32 15 14 15 11 17 25 51 .

(b) 12 25 17 19 51 32 45 18 22 37 15 .

6.11. Use mathematical induction to prove the correctness of Algorithm
mergesort. Assume that Algorithm merge works correctly.

6.12. Show that the space complexity of Algorithm mergesort is Θ(n).

6.13. It was shown in Sec. 6.3 that algorithms bottomupsort and mergesort

are very similar. Give an example of an array of numbers in which

(a) Algorithm bottomupsort and Algorithm mergesort perform the
same number of element comparisons.

(b) Algorithm bottomupsort performs more element comparisons
than Algorithm mergesort.

(c) Algorithm bottomupsort performs fewer element comparisons
than Algorithm mergesort.

6.14. Consider the following modification of Algorithm mergesort. The algo-
rithm first divides the input array A[low ..high] into four parts A1, A2, A3

and A4 instead of two. It then sorts each part recursively, and finally
merges the four sorted parts to obtain the original array in sorted order.
Assume for simplicity that n is a power of 4.

(a) Write out the modified algorithm.

198 Divide and Conquer

(b) Analyze its running time.

6.15. What will be the running time of the modified algorithm in Exercise 6.14
if the input array is divided into k parts instead of 4? Here, k is a fixed

positive integer greater than 1.

6.16. Consider the following modification to Algorithm mergesort. We apply
the algorithm on the input array A[1..n] and continue the recursive calls
until the size of a subinstance becomes relatively small, say m or less.
At this point, we switch to Algorithm insertionsort and apply it on
the small instance. So, the first test of the modified algorithm will look
like the following:

if high − low + 1 ≤ m then insertionsort(A[low ..high]).

What is the largest value of m in terms of n such that the running time
of the modified algorithm will still be Θ(n log n)? You may assume for
simplicity that n is a power of 2.

6.17. Use Algorithm select to find the kth smallest element in the list of
numbers given in Example 6.1, where

(a) k = 1. (b) k = 9. (c) k = 17. (d) k = 22. (e) k = 25.

6.18. What will happen if in Algorithm select the true median of the elements
is chosen as the pivot instead of the median of medians? Explain.

6.19. Let A[1..105] be a sorted array of 105 integers. Suppose we run Algorithm
select to find the 17th element in A. How many recursive calls to
Procedure select will there be? Explain your answer clearly.

6.20. Explain the behavior of Algorithm select if the input array is already
sorted in nondecreasing order. Compare that to the behavior of Algo-
rithm binarysearchrec.

6.21. In Algorithm select, groups of size 5 are sorted in each invocation of
the algorithm. This means that finding a procedure that sorts a group
of size 5 that uses the fewest number of comparisons is important. Show
that it is possible to sort five elements using only seven comparisons.

6.22. One reason that Algorithm select is inefficient is that it does not make
full use of the comparisons that it makes: After it discards one portion
of the elements, it starts on the subproblem from scratch. Give a pre-
cise count of the number of comparisons the algorithm performs when
presented with n elements. Note that it is possible to sort five elements
using only seven comparisons (see Exercise 6.21).

6.23. Based on the number of comparisons counted in Exercise 6.22, determine
for what values of n one should use a straightforward sorting method and
extract the kth element directly.

6.24. Let g denote the size of each group in Algorithm select for some positive
integer g ≥ 3. Derive the running time of the algorithm in terms of g.

Exercises 199

What happens when g is too large compared to the value used in the
algorithm, namely 5?

6.25. Which of the following group sizes 3, 4, 5, 7, 9, 11 guarantees Θ(n)
worst case performance for Algorithm select? Prove your answer. (See
Exercise 6.24).

6.26. Rewrite Algorithm select using Algorithm split to partition the input
array. Assume for simplicity that all input elements are distinct. What
is the advantage of the modified algorithm?

6.27. Let A[1..n] and B[1..n] be two arrays of distinct integers sorted in in-
creasing order. Give an efficient algorithm to find the median of the 2n
elements in both A and B. What is the running time of your algorithm?

6.28. Make use of the algorithm obtained in Exercise 6.27 to device a divide-
and-conquer algorithm for finding the median in an array A[1..n]. What
is the time complexity of your algorithm? (Hint: Make use of Algorithm
mergesort).

6.29. Consider the problem of finding all the first k smallest elements in an
array A[1..n] of n distinct elements. Here, k is not constant, i.e., it is part
of the input. We can solve this problem easily by sorting the elements
and returning A[1..k]. This, however, costs O(n log n) time. Give a Θ(n)
time algorithm for this problem. Note that running Algorithm select

k times costs Θ(kn) = O(n2) time, as k is not constant.

6.30. Consider the multiselection problem: Given a set S of n elements and
a set K of r ranks k1, k2, . . . , kr, find the k1th, k2th, . . . , krth smallest
elements. For example, if K = {2, 7, 9, 50}, the problem is to find the
2nd, 7th, 9th and 50th smallest elements. This problem can be solved
trivially in Θ(rn) time by running Algorithm select r times, once for
each rank kj , 1 ≤ j ≤ r. Give an O(n log r) time algorithm to solve this
problem.

6.31. Apply Algorithm split on the array 27 13 31 18 45 16 17 53 .

6.32. Let f(n) be the number of element interchanges that Algorithm split

makes when presented with the input array A[1..n] excluding interchang-
ing A[low] with A[i].

(a) For what input arrays A[1..n] is f(n) = 0?

(b) What is the maximum value of f(n)? Explain when this maximum
is achieved?

6.33. Modify Algorithm split so that it partitions the elements in A[low ..high]
around x, where x is the median of {A[low], A[b(low + high)/2c],
A[high]}. Will this improve the running time of Algorithm quicksort?
Explain.

6.34. Algorithm split is used to partition an array A[low ..high] around A[low].

200 Divide and Conquer

Another algorithm to achieve the same result works as follows. The
algorithm has two pointers i and j. Initially, i = low and j = high. Let
the pivot be x = A[low]. The pointers i and j move from left to right
and from right to left, respectively, until it is found that A[i] > x and
A[j] ≤ x. At this point A[i] and A[j] are interchanged. This process
continues until i ≥ j. Write out the complete algorithm. What is the
number of comparisons performed by the algorithm?

6.35. Let A[1..n] be a set of integers. Give an algorithm to reorder the ele-
ments in A so that all negative integers are positioned to the left of all
nonnegative integers. Your algorithm should run in time Θ(n).

6.36. Use Algorithm quicksort to sort the array

(a) 24 33 24 45 12 12 24 12 .

(b) 3 4 5 6 7 .

(c) 23 32 27 18 45 11 63 12 19 16 25 52 14 .

6.37. Show that the work space needed by Algorithm quicksort varies be-
tween Θ(log n) and Θ(n). What is its average space complexity?

6.38. Explain the behavior of Algorithm quicksort when the input is already
sorted in decreasing order. You may assume that the input elements are
all distinct.

6.39. Explain the behavior of Algorithm quicksort when the input array
A[1..n] consists of n identical elements.

6.40. Modify Algorithm quicksort slightly so that it will solve the selection
problem. What is the time complexity of the new algorithm in the worst
case and on the average?

6.41. Give an iterative version of Algorithm quicksort.

6.42. Which of the following sorting algorithms are stable (see Exercise 5.14)?

(a)heapsort (b)mergesort (c)quicksort.

6.43. A sorting algorithm is called adaptive if its running time depends not
only on the number of elements n, but also on their order. Which of the
following sorting algorithms are adaptive?

(a)selectionsort (b)insertionsort (c)bubblesort (d)heapsort

(e)bottomupsort (f)mergesort (g)quicksort (h)radixsort.

6.44. Let x = a + bi and y = c + di be two complex numbers. The product
xy can easily be calculated using four multiplications, that is, xy =
(ac − bd) + (ad + bc)i. Devise a method for computing the product xy
using only three multiplications.

6.45. Write out an algorithm for the traditional algorithm for matrix multipli-
cation described in Sec. 6.8.

Exercises 201

6.46. Show that the traditional algorithm for matrix multiplication described
in Sec. 6.8 requires n3 multiplications and n3 − n2 additions (see Exer-
cise 6.45).

6.47. Explain how to modify Strassen’s algorithm for matrix multiplication so
that it can also be used with matrices whose size is not necessarily a
power of 2.

6.48. Suppose we modify the algorithm for the closest pair problem so that not
each point in T is compared with seven points in T . Instead, every point
to the left of the vertical line L is compared with a number of points to
its right.

(a) What are the necessary modifications to the algorithm?

(b) How many points to the right of L have to be compared with every
point to its left? Explain.

6.49. Rewrite the algorithm for the closest pair problem without the presorting
step. The time complexity of your algorithm should be Θ(n log n). (Hint:
Make use of Algorithm mergesort).

6.50. Design a divide-and-conquer algorithm to determine whether two given
binary trees T1 and T2 are identical.

6.51. Design a divide-and-conquer algorithm that computes the height of a
binary tree.

6.52. Give a divide-and-conquer algorithm to find the second largest element
in an array of n numbers. Derive the time complexity of your algorithm.

6.53. Consider the following algorithm that attempts to find a minimum cost
spanning tree MST (G) for a weighted undirected graph G = (V, E) (see
Sec. 8.3). Divide G into two subgraphs G1 and G2 of approximately the
same number of vertices. Compute T1 = MST (G1) and T2 = MST (G2).
Find an edge e of minimum weight that connects G1 with G2. Return
T1 ∪ T2 ∪ {e}. Show that this algorithm does not always compute a
spanning tree of minimum weight. What is the shape of the spanning
tree computed by the algorithm?

6.54. Let B be an n × n chessboard, where n is a power of 2. Use a divide-
and-conquer argument to describe (in words) how to cover all squares
of B except one with L-shaped tiles. For example, if n = 2, then there
are four squares three of which can be covered by one L-shaped tile, and
if n = 4, then there are 16 squares of which 15 can be covered by 5
L-shaped tiles.

6.55. Use a combinatorial argument to show that if n is a power of 2, then
n2 ≡ 1 (mod 3). (Hint: Use the result of Exercise 6.54).

220 Dynamic Programming

The ith entry of column 9, that is, V [i, 9] contains the maximum value we

can get by filling the knapsack using the first i items. Thus, an optimal packing

is found in the last entry of the last column and is achieved by packing items 3

and 4. There is also another optimal solution, which is packing items 1, 2 and

3. This packing corresponds to entry V [3, 9] in the table, which is the optimal

packing before the fourth item was considered.

7.7 Exercises

7.1. We have defined the dynamic programming paradigm in such a way
that it encompasses all algorithms that solve a problem by breaking it
down into smaller subproblems, saving the solution to each subproblem
and using these solutions to compute an optimal solution to the main
problem. Which of the following algorithms can be classified as dynamic
programming algorithms?

(a) Algorithm linearsearch.

(b) Algorithm insertionsort.

(c) Algorithm bottomupsort.

(d) Algorithm mergesort.

7.2. Give an efficient algorithm to compute f(n), the nth number in the
Fibonacci sequence (see Example 7.1). What is the time complexity of
your algorithm? Is it an exponential algorithm? Explain.

7.3. Give an efficient algorithm to compute the binomial coefficient

(

n
k

)

(see

Example 7.2). What is the time complexity of your algorithm? Is it an
exponential algorithm? Explain.

7.4. Prove Observation 7.1.

7.5. Use Algorithm lcs to find the length of a longest common subsequence
of the two strings A = “xzyzzyx” and B = “zxyyzxz”. Give one longest
common subsequence.

7.6. Show how to modify Algorithm lcs so that it outputs a longest common
subsequence as well.

7.7. Show how to modify Algorithm lcs so that it requires only Θ(min{m, n})
space.

7.8. In Sec. 7.3, it was shown that the number of ways to fully parenthesize

Exercises 221

n matrices is given by the summation

f(n) =

n−1
∑

k=1

f(k)f(n− k).

Show that the solution to this recurrence is

f(n) =
1

n

(

2n− 2
n− 1

)

.

7.9. Consider using Algorithm matchain to multiply the following five ma-
trices:

M1 : 4× 5, M2 : 5× 3, M3 : 3× 6, M4 : 6× 4, M5 : 4× 5.

Assume the intermediate results shown in Fig. 7.6 for obtaining the mul-
tiplication M1 × M2 × M3 × M4 × M5, where C[i, j] is the minimum
number of scalar multiplications needed to carry out the multiplication
Mi × . . . ×Mj , 1 ≤ i ≤ j ≤ 5. Also shown in the figure parenthesized
expressions showing the optimal sequence for carrying out the multi-
plication Mi × . . . × Mj . Find C[1, 5] and the optimal parenthesized
expressions for carrying out the multiplication M1 × . . .×M5.

C[1, 1] = 0 C[1, 2] = 60 C[1, 3] = 132 C[1, 4] = 180
M1 M1M2 (M1M2)M3 (M1M2)(M3M4)

C[2, 2] = 0 C[2, 3] = 90 C[2, 4] = 132 C[2, 5] = 207
M2 M2M3 M2(M3M4) M2((M3M4)M5)

C[3, 3] = 0 C[3, 4] = 72 C[3, 5] = 132
M3 M3M4 (M3M4)M5

C[4, 4] = 0 C[4, 5] = 120
M4 M4M5

C[5, 5] = 0
M5

Fig. 7.6 An incomplete table for the matrix chain multiplication problem.

7.10. Give a parenthesized expression for the optimal order of multiplying the
five matrices in Example 7.4.

7.11. Consider applying Algorithm matchain on the following five matrices:

M1 : 2× 3, M2 : 3× 6, M3 : 6× 4, M4 : 4× 2, M5 : 2× 7.

222 Dynamic Programming

(a) Find the minimum number of scalar multiplications needed to mul-
tiply the five matrices, (that is C[1, 5]).

(b) Give a parenthesized expression for the order in which this optimal
number of multiplications is achieved.

7.12. Give an example of three matrices in which one order of their multipli-
cation costs at least 100 times the other order.

7.13. Show how to modify the matrix chain multiplication algorithm so that
it also produces the order of multiplications as well.

7.14. Let G = (V, E) be a weighted directed graph, and let s, t ∈ V . Assume
that there is at least one path from s to t;

(a) Let π be a path of shortest length from s to t that passes by another
vertex x. Show that the portion of the path from s to x is a shortest
path from s to x.

(b) Let π′ be a longest simple path from s to t that passes by another
vertex y. Show that the portion of the path from s to y is not
necessarily a longest path from s to y.

7.15. Run the all-pairs shortest path algorithm on the weighted directed graph
shown in Fig. 7.7.

6 9

2

1

4

1

4 3

2
7

41

Fig. 7.7 An instance of the all-pairs shortest path problem.

7.16. Use the all-pairs shortest path algorithm to compute the distance matrix
for the directed graph with the lengths of the edges between all pairs of
vertices are as given by the matrix

(a)







0 1 ∞ 2
2 0 ∞ 2
∞ 9 0 4
8 2 3 0







(b)







0 2 4 6
2 0 1 2
5 9 0 1
9 ∞ 2 0







.

7.17. Give an example of a directed graph that contains some edges with neg-
ative costs and yet the all-pairs shortest path algorithm gives the correct
distances.

Exercises 223

7.18. Give an example of a directed graph that contains some edges with neg-
ative costs such that the all-pairs shortest path algorithm fails to give
the correct distances.

7.19. Show how to modify the all-pairs shortest path algorithm so that it
detects negative-weight cycles (A negative-weight cycle is a cycle whose
total length is negative).

7.20. Prove Observation 7.2.

7.21. Solve the following instance of the knapsack problem. There are four
items of sizes 2, 3, 5, and 6 and values 3, 4, 5, and 7, and the knapsack
capacity is 11.

7.22. Solve the following instance of the knapsack problem. There are five
items of sizes 3, 5, 7, 8 and 9 and values 4, 6, 7, 9 and 10, and the
knapsack capacity is 22.

7.23. Explain what would happen when running the knapsack algorithm on
an input in which one item has negative size.

7.24. Show how to modify Algorithm knapsack so that it requires only Θ(C)
space, where C is the knapsack capacity.

7.25. Show how to modify Algorithm knapsack so that it outputs the items
packed in the knapsack as well.

7.26. In order to lower the prohibitive running time of the knapsack problem,
which is Θ(nC), we may divide C and all the si’s by a large number K
and take the floor. That is, we may transform the given instance into
a new instance with capacity bC/Kc and item sizes bsi/Kc, 1 ≤ i ≤ n.
Now, we apply the algorithm for the knapsack discussed in Sec. 7.6. This
technique is called scaling and rounding (see Sec. 15.6). What will be the
running time of the algorithm when applied to the new instance? Give
a counterexample to show that scaling and rounding does not always
result in an optimal solution to the original instance.

7.27. Another version of the knapsack problem is to let the set U contain a
set of types of items, and the objective is to fill the knapsack with any
number of items of each type in order to maximize the total value without
exceeding the knapsack capacity. Assume that there is an unlimited
number of items of each type. More formally, let T = {t1, t2, . . . , tn} be
a set of n types of items, and C the knapsack capacity. For 1 ≤ j ≤ n,
let sj and vj be, respectively, the size and value of the items of type j.
Find a set of nonnegative integers x1, x2, . . . , xn such that

n
∑

i=1

xivi

224 Dynamic Programming

is maximized subject to the constraint

n
∑

i=1

xisi ≤ C.

x1, x2, . . . , xn are nonnegative integers.

Note that xj = 0 means that no item of the jth type is packed in the
knapsack. Rewrite the dynamic programming algorithm for this version
of the knapsack problem.

7.28. Solve the following instance of the version of the knapsack problem de-
scribed in Exercise 7.27. There are five types of items with sizes 2, 3, 5
and 6 and values 4, 7, 9 and 11, and the knapsack capacity is 8.

7.29. Show how to modify the knapsack algorithm discussed in Exercise 7.27
so that it computes the number of items packed from each type.

7.30. Consider the money change problem. We have a currency system that
has n coins with values v1, v2, . . . , vn, where v1 = 1, and we want to
pay change of value y in such a way that the total number of coins is
minimized. More formally, we want to minimize the quantity

n
∑

i=1

xi

subject to the constraint
n

∑

i=1

xivi = y.

Here, x1, x2, . . . , xn are nonnegative integers (so xi may be zero).

(a) Give a dynamic programming algorithm to solve this problem.

(b) What are the time and space complexities of your algorithm?

(c) Can you see the resemblance of this problem to the version of the
knapsack problem discussed in Exercise 7.27? Explain.

7.31. Apply the algorithm in Exercise 7.30 to the instance v1 = 1, v2 = 5, v3 =
7, v4 = 11 and y = 20.

7.32. Let G = (V, E) be a directed graph with n vertices. G induces a relation
R on the set of vertices V defined by: u R v if and only if there is a
directed edge from u to v, i.e., if and only if (u, v) ∈ E. Let MR be the
adjacency matrix of G, i.e., MR is an n×n matrix satisfying MR[u, v] = 1
if (u, v) ∈ E and 0 otherwise. The reflexive and transitive closure of MR,
denoted by M∗

R, is defined as follows. For u, v ∈ V , if u = v or there
is a path in G from u to v, then M∗

R[u, v] = 1 and 0 otherwise. Give
a dynamic programming algorithm to compute M∗

R for a given directed

Exercises 225

graph. (Hint: You only need a slight modification of Floyd’s algorithm
for the all-pairs shortest path problem).

7.33. Let G = (V, E) be a directed graph with n vertices. Define the n × n
distance matrix D as follows. For u, v ∈ V , D[u, v] = d if and only if
the length of the shortest path from u to v measured in the number of
edges is exactly d. For example, for any v ∈ V , D[v, v] = 0 and for
any u, v ∈ V D[u, v] = 1 if and only if (u, v) ∈ E. Give a dynamic
programming algorithm to compute the distance matrix D for a given
directed graph. (Hint: Again, you only need a slight modification of
Floyd’s algorithm for the all-pairs shortest path problem).

7.34. Let G = (V, E) be a directed acyclic graph (dag) with n vertices. Let
s and t be two vertices in V such that the indegree of s is 0 and the
outdegree of t is 0. Give a dynamic programming algorithm to compute
a longest path in G from s to t. What is the time complexity of your
algorithm?

7.35. Give a dynamic programming algorithm for the traveling salesman prob-
lem: Given a set of n cities with their intercity distances, find a tour of
minimum length. Here, a tour is a cycle that visits each city exactly
once. What is the time complexity of your algorithm? This problem can
be solved using dynamic programming in time O(n22n) (see the biblio-
graphic notes).

7.36. Let P be a convex polygon with n vertices (see Sec. 18.2). A chord in
P is a line segment that connects two nonadjacent vertices in P . The
problem of triangulating a convex polygon is to partition the polygon
into n− 2 triangles by drawing n− 3 chords inside P . Figure 7.8 shows
two possible triangulations of the same convex polygon.

Fig. 7.8 Two triangulations of the same convex polygon.

(a) Show that the number of ways to triangulate a convex polygon
with n vertices is the same as the number of ways to multiply n−1
matrices.

(b) A minimum weight triangulation is a triangulation in which the
sum of the lengths of the n−3 chords is minimum. Give a dynamic
programming algorithm for finding a minimum weight triangulation
of a convex polygon with n vertices. (Hint: This problem is very
similar to the matrix chain multiplication covered in Sec. 7.3).

Exercises 251

Algorithm 8.6 huffman

Input: A set C = {c1, c2, . . . , cn} of n characters and their frequencies
{f(c1), f(c2), . . . , f(cn)}.

Output: A Huffman tree (V, T) for C.

1. Insert all characters into a min-heap H according to their frequencies.
2. V ← C; T = {}
3. for j← 1 to n− 1
4. c← deletemin(H)
5. c′← deletemin(H)
6. f(v)← f(c) + f(c′) {v is a new node}
7. insert(H, v)
8. V = V ∪ {v} {Add v to V }
9. T = T ∪ {(v, c), (v, c′)} {Make c and c′ children of v in T}

10. end while

8.6 Exercises

8.1. Is Algorithm linearsearch described in Sec. 1.3 a greedy algorithm?
Explain.

8.2. Is Algorithm majority described in Sec. 5.7 a greedy algorithm? Ex-
plain.

8.3. This exercise is about the money change problem stated in Exercise 7.30.
Consider a currency system that has the following coins and their values:
dollar (100 cents), quarter (25 cents), dime (10 cents), nickel (5 cents)
and 1-cent coins. (A unit-value coin is always required). Suppose we
want to give a change of value n cents in such a way that the total
number of coins n is minimized. Give a greedy algorithm to solve this
problem.

8.4. Give a counterexample to show that the greedy algorithm obtained in
Exercise 8.3 does not always work if we instead use coins of values 1
cent, 5 cents, 7 cents and 11 cents. Note that in this case dynamic
programming can be used to find the minimum number of coins. (See
Exercises 7.30 and 7.31).

8.5. Suppose in the money change problem of Exercise 8.3 the coin values
are: 1, 2, 4, 8, 16, . . . , 2k, for some positive integer k. Give an O(log n)
algorithm to solve the problem if the value to be paid is n < 2k+1.

8.6. For what denominations {v1, v2, . . . , vk}, k ≥ 2, does the greedy algo-
rithm for the money change problem stated in Exercise 7.30 always give
the minimum number of coins? Prove your answer.

8.7. Let G = (V, E) be an undirected graph. A vertex cover for G is a subset

252 The Greedy Approach

S ⊆ V such that every edge in E is incident to at least one vertex in S.
Consider the following algorithm for finding a vertex cover for G. First,
order the vertices in V by decreasing order of degree. Next execute the
following step until all edges are covered. Pick a vertex of highest degree
that is incident to at least one edge in the remaining graph, add it to the
cover, and delete all edges incident to that vertex. Show that this greedy
approach does not always result in a vertex cover of minimum size.

8.8. Let G = (V, E) be an undirected graph. A clique C in G is a subgraph
of G that is a complete graph by itself. A clique C is maximum if there
is no other clique C′ in G such that the size of C′ is greater than the size
of C. Consider the following method that attempts to find a maximum
clique in G. Initially, let C = G. Repeat the following step until C is
a clique. Delete from C a vertex that is not connected to every other
vertex in C. Show that this greedy approach does not always result in a
maximum clique.

8.9. Let G = (V, E) be an undirected graph. A coloring of G is an assignment
of colors to the vertices in V such that no two adjacent vertices have the
same color. The coloring problem is to determine the minimum number
of colors needed to color G. Consider the following greedy method that
attempts to solve the coloring problem. Let the colors be 1, 2, 3,
First, color as many vertices as possible using color 1. Next, color as
many vertices as possible using color 2, and so on. Show that this greedy
approach does not always color the graph using the minimum number of
colors.

8.10. Let A1, A2, . . . , Am be m arrays of integers each sorted in nondecreas-
ing order. Each array Aj is of size nj . Suppose we want to merge all
arrays into one array A using an algorithm similar to Algorithm merge

described in Sec. 1.4. Give a greedy strategy for the order in which these
arrays should be merged so that the overall number of comparisons is
minimized. For example, if m = 3, we may merge A1 with A2 to obtain
A4 and then merge A3 with A4 to obtain A. Another alternative is to
merge A2 with A3 to obtain A4 and then merge A1 with A4 to obtain
A. Yet another alternative is to merge A1 with A3 to obtain A4 and
then merge A2 with A4 to obtain A. (Hint: Give an algorithm similar
to Algorithm huffman).

8.11. Analyze the time complexity of the algorithm in Exercise 8.10.

8.12. Consider the following greedy algorithm which attempts to find the dis-
tance from vertex s to vertex t in a directed graph G with positive lengths
on its edges. Starting from vertex s, go to the nearest vertex, say x. From
vertex x, go to the nearest vertex, say y. Continue in this manner until
you arrive at vertex t. Give a graph with the fewest number of vertices
to show that this heuristic does not always produce the distance from s

Exercises 253

to t. (Recall that the distance from vertex u to vertex v is the length of
a shortest path from u to v).

8.13. Apply Algorithm dijkstra on the directed graph shown in Fig. 8.7.
Assume that vertex 1 is the start vertex.

1

2

3

6

4

5

12

15

4

9

134

3
5

2

Fig. 8.7 Directed graph.

8.14. Is Algorithm dijkstra optimal? Explain.

8.15. What are the merits and demerits of using the adjacency matrix represen-
tation instead of the adjacency lists in the input to Algorithm dijkstra?

8.16. Modify Algorithm dijkstra so that it finds the shortest paths in addition
to their lengths.

8.17. Prove that the subgraph defined by the paths obtained from the modified
shortest path algorithm as described in Exercise 8.16 is a tree. This tree
is called the shortest path tree.

8.18. Can a directed graph have two distinct shortest path trees (see Exer-
cise 8.17)? Prove your answer.

8.19. Give an example of a directed graph to show that Algorithm dijkstra

does not always work if some of the edges have negative weights.

8.20. Show that the proof of correctness of Algorithm dijkstra (Lemma 8.1)
does not work if some of the edges in the input graph have negative
weights.

8.21. Let G = (V, E) be a directed graph such that removing the directions
from its edges results in a planar graph. What is the running time of
Algorithm shortestpath when applied to G? Compare that to the
running time when using Algorithm dijkstra.

8.22. Let G = (V, E) be a directed graph such that m = O(n1.2), where
n = |V | and m = |E|. What changes should be made to Algorithm
shortestpath so that it will run in time O(m)?

8.23. Show the result of applying Algorithm kruskal to find a minimum cost
spanning tree for the undirected graph shown in Fig. 8.8.

254 The Greedy Approach

1 3 5

642

1

2

3

3

6

7

6

4

9

7

2

Fig. 8.8 An undirected graph.

8.24. Show the result of applying Algorithm prim to find a minimum cost
spanning tree for the undirected graph shown in Fig. 8.8.

8.25. Let G = (V, E) be an undirected graph such that m = O(n1.99), where
n = |V | and m = |E|. Suppose you want to find a minimum cost
spanning tree for G. Which algorithm would you choose: Algorithm
prim or Algorithm kruskal? Explain.

8.26. Let e be an edge of minimum weight in an undirected graph G. Show
that e belongs to some minimum cost spanning tree of G.

8.27. Does Algorithm prim work correctly if the graph has negative weights?
Prove your answer.

8.28. Let G be an undirected weighted graph such that no two edges have the
same weight. Prove that G has a unique minimum cost spanning tree.

8.29. What is the number of spanning trees of a complete undirected graph G
with n vertices? For example, the number of spanning trees of K3, the
complete graph with three vertices, is 3.

8.30. Let G be a directed weighted graph such that no two edges have the
same weight. Let T be a shortest path tree for G (see Exercise 8.17).
Let G′ be the undirected graph obtained by removing the directions from
the edges of G. Let T ′ be a minimum spanning tree for G′. Prove or
disprove that T = T ′.

8.31. Use Algorithm huffman to find an optimal code for the characters a, b,
c, d, e and f whose frequencies in a given text are respectively 7, 5, 3, 2,
12, 9.

8.32. Prove that the graph obtained in Algorithm huffman is a tree.

8.33. Algorithm huffman constructs the code tree in a bottom-up fashion. Is
it a dynamic programming algorithm?

8.34. Let B = {b1, b2, . . . , bn} and W = {w1, w2, . . . , wn} be two sets of black
and white points in the plane. Each point is represented by the pair
(x, y) of x and y coordinates. A black point bi = (xi, yi) dominates
a white point wj = (xj , yj) if and only if xi ≥ xj and yi ≥ yj . A
matching between a black point bi and a white point wj is possible if

296 NP-complete Problems

10.8 Exercises

10.1. Give an efficient algorithm to solve the decision version of the sorting

stated on page 282. What is the time complexity of your algorithm?

10.2. Give an efficient algorithm to solve the problem set disjointness stated
on page 282. What is the time complexity of your algorithm?

10.3. Design a polynomial time algorithm for the problem 2-coloring defined
on page 282. (Hint: Color the first vertex white, all adjacent vertices
black, etc).

10.4. Design a polynomial time algorithm for the problem 2-sat defined on
page 282.

10.5. Let I be an instance of the problem coloring, and let s be a claimed
solution to I. Describe a deterministic algorithm to test whether s is a
solution to I.

10.6. Design a nondeterministic algorithm to solve the problem satisfiabil-

ity.

10.7. Design a nondeterministic algorithm to solve the problem traveling

salesman.

10.8. Show that P ⊆ NP.

10.9. Let Π1 and Π2 be two problems such that Π1 ∝poly Π2 . Suppose that
problem Π2 can be solved in O(nk) time and the reduction can be done
in O(nj) time. Show that problem Π1 can be solved in O(njk) time.

10.10. Given that the Hamiltonian cycle problem for undirected graphs is NP-
complete, show that the Hamiltonian cycle problem for directed graphs
is also NP-complete.

10.11. Show that the problem bin packing is NP-complete, assuming that the
problem partition is NP-complete.

10.12. Let Π1 and Π2 be two NP-complete problems. Prove or disprove that
Π1 ∝poly Π2 .

10.13. Give a polynomial time algorithm to find a clique of size k in a given
undirected graph G = (V, E) with n vertices. Here k is a fixed positive
integer. Does this contradict the fact that the problem clique is NP-
complete? Explain.

10.14. Consider the following instance of satisfiability:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

(a) Following the reduction method from satisfiability to clique,
transform the above formula into an instance of clique for which
the answer is yes if and only if the the above formula is satisfiable.

Exercises 297

(b) Find a clique of size 4 in your graph and convert it into a satisfying
assignment for the formula given above.

10.15. Consider the formula f given in Exercise 10.14.

(a) Following the reduction method from satisfiability to vertex

cover, transform f into an instance of vertex cover for which
the answer is yes if and only if f is satisfiable.

(b) Find a vertex cover in your graph and convert it into a satisfying
assignment for f .

10.16. The NP-completeness of the problem clique was shown by reducing
satisfiability to it. Give a simpler reduction from vertex cover to
clique.

10.17. Show that any cover of a clique of size n must have exactly n−1 vertices.

10.18. Show that if one can devise a polynomial time algorithm for the problem
satisfiability then NP = P (see Exercise 10.9).

10.19. In Chapter 7 it was shown that the problem knapsack can be solved in
time Θ(nC), where n is the number of items and C is the knapsack ca-
pacity. However, it was mentioned in this chapter that it is NP-complete.
Is there any contradiction? Explain.

10.20. When showing that an optimization problem is not harder than its deci-
sion problem version, it was justified by using binary search and an algo-
rithm for the decision problem in order to solve the optimization version.
Will the justification still be valid if linear search is used instead of binary
search? Explain. (Hint: Consider the problem traveling salesman).

10.21. Prove that if an NP-complete problem Π is shown to be solvable in
polynomial time, then NP = P (see Exercises 10.9 and 10.18).

10.22. Prove that NP = P if and only if for some NP-complete problem Π,
Π ∈ P.

10.23. Is the problem longest path NP-complete when the path is not re-
stricted to be simple? Prove your answer.

10.24. Is the problem longest path NP-complete when restricted to directed
acyclic graphs? Prove your answer. (See Exercises 10.23 and 7.34).

10.25. Show that the problem of finding a shortest simple path between two
vertices s and t in a directed or undirected graph is NP-complete if the
weights are allowed to be negative.

10.26. Show that the problem set cover is NP-complete by reducing the prob-
lem vertex cover to it.

10.27. Show that the problem 3-sat is NP-complete.

10.28. Show that the problem 3-coloring is NP-complete.

298 NP-complete Problems

10.29. Compare the difficulty of the problem tautology to satisfiability.
What does this imply about the difficulty of the class co-NP.

10.30. Prove Theorem 10.7.

10.9 Bibliographic notes

The study of NP-completeness started with two papers. The first was

the seminal paper of Cook (1971) in which the problem satisfiability

was the first problem shown to be NP-complete. The second was Karp

(1972) in which a list of 24 problems were shown to be NP-complete. Both

Stephen Cook and Richard Karp have won the ACM Turing awards and

their Turing award lectures were published in Cook (1983) and Karp (1986).

Garey and Johnson (1979) provides comprehensive coverage of the theory

of NP-completeness and covers the four basic complexity classes introduced

in this chapter. Their book contains the proof that satisfiability is NP-

complete and a list of several hundred NP-complete problems. One of the

most famous of the open problems to be resolved is linear programming.

This problem has been proven to be solvable in polynomial time using

the ellipsoid method (Khachiyan (1979)). It has received much attention,

although its practical significance is yet to be determined. An introduction

to the theory of NP-completeness can also be found in Aho, Hopcroft and

Ullman (1974) and Hopcroft and Ullman (1979).

328 Introduction to Computational Complexity

(3) Stop and accept.

We observe that checking whether (G, k) is in coloring is implemented

by asking the oracle coloring and is answered in one step, by assump-

tion. So, the algorithm presented above is clearly polynomial time bounded,

since it needs at most two steps to either accept or reject. It follows that

chromatic number is in ∆p

2
= PNP.

Example 11.7 minimum equivalent expression. Given a well-formed
boolean expression E and a nonnegative integer k, is there a well-formed boolean
expression E′ that contains k or fewer occurrences of literals such that E′ is
equivalent to E (i.e. E′ if and only if E)?

minimum equivalent expression does not appear to be in ∆p
2. It is not ob-

vious whether an oracle for a problem in NP can be used to solve minimum equiv-

alent expression in deterministic polynomial time. However, this problem can
be solved in nondeterministic polynomial time using an oracle for satisfiability.
The algorithm is as follows

(1) Guess a boolean expression E′ containing k or fewer occurrences of lit-
erals.

(2) Use satisfiability to determine whether ¬((E′ → E) ∧ (E → E′)) is
satisfiable.

(3) If it is not satisfiable then stop and accept, otherwise stop and reject.

The correctness of the above algorithm follows from the fact that a well-formed
formula E is not satisfiable if and only if its negation is a tautology. Thus, since
we want (E′ if and only if E) to be a tautology, we only need to check whether

¬((E′ → E) ∧ (E → E′))

is not satisfiable. As to the time needed, Step 1, generating E′, can easily be

accomplished in polynomial time using a nondeterministic algorithm. Step 2,

querying the satisfiability oracle, is done in one step. It follows that minimum

equivalent expression is in Σp
2 = NPNP.

11.10 Exercises

11.1. Show that the language in Example 11.1 is in DTIME(n). (Hint: Use a
2-tape Turing machine).

11.2. Show that the language L = {ww | w ∈ {a, b}+} is in LOGSPACE by
constructing a log space bounded off-line Turing machine that recognizes
L. Here {a, b}+ denotes all nonempty strings over the alphabet {a, b}.

Exercises 329

11.3. Consider the following decision problem of sorting: Given a sequence of
n distinct positive integers between 1 and n, are they sorted in increasing
order? Show that this problem is in

(a) DTIME(n log n).

(b) LOGSPACE.

11.4. Give an algorithm to solve the problem k-clique defined in Exam-
ple 11.5. Use the O-notation to express the time complexity of your
algorithm.

11.5. Show that the problem k-clique defined in Example 11.5 is in
LOGSPACE.

11.6. Show that the problem gap is in LOGSPACE if the graph is undirected.

11.7. Consider the following decision problem of the selection problem. Given
an array A[1..n] of integers, an integer x and an integer k, 1 ≤ k ≤ n, is
the kth smallest element in A equal to x? Show that this problem is in
LOGSPACE.

11.8. Let A be an n× n matrix. Show that computing A2 is in LOGSPACE.
How about computing Ak for an arbitrary k ≥ 3, where k is part of the
input?

11.9. Show that the problem 2-SAT described on page 282 is in NLOGSPACE.
Conclude that it is in P.

11.10. Show that all finite sets are in LOGSPACE.

11.11. Show that the family of sets accepted by finite state automata is a proper

subset of LOGSPACE. (Hint: The language {anbn | n ≥ 1} is not a
ccepted by any finite state automaton, but it is in LOGSPACE.

11.12. Show that if T1 and T2 are two time-constructible functions, then so are
T1 + T2, T1T2 and 2T1 .

11.13. Prove Corollary 11.5.

11.14. Show that if NSPACE(n) ⊆ NP then NP = NSPACE. Conclude that
NSPACE(n) 6= NP.

11.15. Show that if LOGSPACE = NLOGSPACE, then for every space con-
structible function S(n) ≥ log n, DSPACE(S(n)) = NSPACE(S(n)).

11.16. Describe a log space reduction from the set L = {www | w ∈ {a, b}+} to
the set L′ = {ww | w ∈ {a, b}+}. That is, show that L ∝log L′.

11.17. Show that the relation ∝poly is transitive. That is, if Π ∝poly Π′ and
Π′ ∝poly Π′′, then Π ∝poly Π′′.

11.18. Show that the relation ∝log is transitive. That is, if Π ∝log Π′ and
Π′ ∝log Π′′, then Π ∝log Π′′.

330 Introduction to Computational Complexity

11.19. The problems 2-coloring and 2-SAT were defined in Sec. 10.2. Show
that 2-coloring is log space reducible to 2-SAT. (Hint: Let G = (V, E).
Let the boolean variable xv correspond to vertex v for each vertex v ∈ V ,
and for each edge (u, v) ∈ E construct the two clauses (xu ∨ xv) and
(¬xu ∨ ¬xv)).

11.20. A graph V = (G, E) is bipartite if and only if V can be partitioned into
two sets X and Y such that all edges in E are of the form (x, y) with
x ∈ X and y ∈ Y . Equivalently, G is bipartite if and only if it does not
contain odd-length cycles (see Sec. 3.3). Show that deciding whether
a graph is bipartite is log space reducible to the problem 2-coloring

described in Sec. 10.2.

11.21. Show that for any k ≥ 1, DTIME(nk) is not closed under polynomial
time reductions.

11.22. Show that, for any k ≥ 1, the class DSPACE(logk n) is closed under log
space reductions.

11.23. A set S is linear time reducible to a set T , denoted by S ∝n T , if there
exists a function f that can be computed in linear time (that is, f(x)
can be computed in c|x| steps, for all input strings x, where c is some
constant > 0) such that

∀x x ∈ S if and only if f(x) ∈ T.

Show that if S ∝n T and T is in DTIME(nk), then S is in DTIME(nk).
That is, DTIME(nk) (k ≥ 1) is closed under linear time reducibility.

11.24. Suppose that k in Exercise 11.5 is not fixed, that is, k is part of the
input. Will the problem still be in LOGSPACE? Explain.

11.25. Show that the class NLOGSPACE is closed under complementation.
Conclude that the complement of the problem gap is NLOGSPACE-
complete.

11.26. Show that the problem gap remains NLOGSPACE-complete even if the
graph is acyclic.

11.27. Show that the problem 2-SAT described in Sec. 10.2 is complete for the
class NLOGSPACE under log space reduction (see Exercise 11.9). (Hint:
Reduce the complement of the problem gap to it. Let G = (V, E) be a
directed acyclic graph. gap is NLOGSPACE-complete even if the graph
is acyclic (Exercise 11.26). By Exercise 11.25, the complement of the
problem gap is NLOGSPACE-complete. Associate with each vertex v
in V a boolean variable xv. Associate with each edge (u, v) ∈ E the
clause (¬xu ∨ xv), and add the clauses (xs) for the start vertex and
(¬xt) for the goal vertex t. Prove that 2-SAT is satisfiable if and only if
there is no path from s to t).

Exercises 331

11.28. Define the class

POLYLOGSPACE =
⋃

k≥1

DSPACE(logk n).

Show that there is no set that is complete for the class POLY-
LOGSPACE. (Hint: The class DSPACE(logk n) is closed under log space
reduction).

11.29. Prove that PSPACE ⊆ P if and only if PSPACE ⊆ PSPACE(n).
(Hint: Use padding argument).

11.30. Does there exist a problem that is complete for the class DTIME(n)
under log space reduction? Prove your answer.

11.31. Use the fact that there is an NP-complete problem to show that there
is no problem that is complete for the class NTIME(nk) under log space
reduction for any k ≥ 1.

11.32. Let L be a class that is closed under complementation and let the set L
(that is not necessarily in L) be such that

∀L′ ∈ L L′ ∝ L.

Show that
∀L′′ ∈ co-L L′′ ∝ L.

11.33. Show that for any class of languages L, if L is complete for the class L,
then L is complete for the class co-L.

11.34. Show that NLOGSPACE is strictly contained in PSPACE.

11.35. Show that DEXT 6= PSPACE. (Hint: Show that DEXT is not closed
under ∝poly).

11.36. Prove

(a) Theorem 11.15(1).

(b) Theorem 11.15(2).

(c) Theorem 11.15(3).

11.37. Prove

(a) Theorem 11.16(1).

(b) Theorem 11.16(2).

11.38. Prove

(a) Theorem 11.17(1).

(b) Theorem 11.17(2).

11.39. Prove Theorem 11.18.

11.40. Show that the problem path system accessibility∈ P.

332 Introduction to Computational Complexity

11.41. Show that polynomial time Turing reduction as defined on page 325
implies polynomial time transformation as defined in Sec. 11.7. Is the
converse true? Explain.

11.42. Consider the max-clique problem defined as follows. Given a graph G =
(V, E) and a positive integer k, decide whether the maximal complete
subgraph of G is of size k. Show that max-clique is in ∆p

2.

11.43. Prove that Σp
1 = NP.

11.44. Show that if Σp
k ⊆ Πp

k, then Σp
k = Πp

k.

11.45. Let PLOGSPACE be the class of sets accepted by a parallel model of
computation using logarithmic space. Show that PLOGSPACE = P.

11.11 Bibliographic notes

Part of the material in this chapter is based on Sudborough(1982). Other

references include Balcazar, Diaz and Gabarro (1988,1990), Bovet and

Crescenzi (1994), Garey and Johnson (1979), Hopcroft and Ullman (1979)

and Papadimitriou(1994). The book by Bovet and Crescenzi (1994) pro-

vides a good introduction to the field of computational complexity. The

first attempt to make a systematic approach to computational complexity

was made by Rabin(1960). The study of time and space complexity can be

said to begin with Hartmanis and Stearns(1965), Stearns, Hartmanis and

Lewis(1965) and Lewis, Stearns and Harmanis(1965). This work contains

most of the basic theorems of complexity classes and time and space hierar-

chy. Theorem 11.4 is due to Savitch (1970). Extensive research in this field

emerged and enormous number of papers have been published since then.

For comments about NP-complete problems, see the bibliographic notes

of Chapter 10. PSPACE-complete problems were first studied in Karp

(1972) including csg recognition and lba acceptance. quantified

boolean formulas was shown to be PSPACE-complete in Stockmeyer

and Meyer (1973) and Stockmeyer (1974). The linear bounded automata

problem, which predates the NP = P question, is the problem of decid-

ing whether nondeterministic LBA’s are equivalent to deterministic LBA’s,

that is whether NSPACE(n) = DSPACE(n).

NLOGSPACE-complete problems were studied by Savitch (1970), Sud-

borough (1975a,b), Springsteel (1976), Jones (1975), and Jones, Lien and

Lasser (1976). The NLOGSPACE-completeness of the graph accissibil-

ity problem (gap) was proven in Jones (1975).

Exercises 367

because it caused the greatest increase in the lower bound of the right

subtree. This heuristic is useful because it is faster to find the solution

by following the left edges, which reduce the dimension as opposed to the

right edges which merely add a new ∞ and probably more zeros. However,

we did not use this heuristic when splitting at the node containing matrix

C. It is left as an exercise to find the optimal solution with fewer node

splittings.

From the above example, it seems that the heap is an ideal data struc-

ture to use in order to expand the node with the least cost (or maximum

cost in case of maximization). Although branch-and-bound algorithms are

generally complicated and hard to program, they proved to be efficient in

practice.

13.6 Exercises

13.1. Let k-coloring be a generalization of the 3-coloring problem pre-
sented in Sec. 13.2. How many nodes are generated by its corresponding
backtracking algorithm in the worst case?

13.2. Consider the algorithm for 3-coloring presented in Sec. 13.2. Give an
efficient algorithm to test whether a vector corresponding to a 3-coloring
of a graph is legal.

13.3. Consider the algorithm for 3-coloring presented in Sec. 13.2. Explain
how to efficiently test whether the current vector is partial throughout
the execution of the algorithm.

13.4. Let Algorithm n-queens be a generalization of Algorithm 4-queens pre-
sented in Sec. 13.3 for the case of an n×n chessboard. How many nodes
are generated by Algorithm n-queens in the worst case?

13.5. Show that two queens placed at positions xi and xj are in the same
diagonal if and only if

xi − xj = i− j or xi − xj = j − i.

13.6. Give a recursive algorithm for the 8-queens problem.

13.7. Does the n-queen problem have a solution for every value of n ≥ 4?
Prove your answer.

13.8. Modify Algorithm 4-queens so that it reduces the search space from 44

to 4! as described in Sec. 13.3.

13.9. Design a backtracking algorithm to generate all permutations of the num-
bers 1, 2, . . . , n.

368 Backtracking

13.10. Design a backtracking algorithm to generate all 2n subsets of the numbers
1, 2, . . . , n.

13.11. Write a backtracking algorithm to solve the knight tour problem: Given
an 8×8 chessboard, decide if it is possible for a knight placed at a certain
position of the board to visit every square of the board exactly once and
return to its start position.

13.12. Write a backtracking algorithm to solve the following variant of the par-

tition problem (see Example 13.3): Given n positive integers X =
{x1, x2, . . . , xn} and a positive integer y, does there exist a subset Y ⊆ X
whose elements sum up to y?

13.13. Give a backtracking algorithm to solve the Hamiltonian cycle prob-
lem: Given an undirected graph G = (V, E), determine whether it con-
tains a simple cycle that visits each vertex exactly once.

13.14. Consider the knapsack problem defined in Sec. 7.6. It was shown that
using dynamic programming, the problem can be solved in time Θ(nC),
where n is the number of items and C is the knapsack capacity.

(a) Give a backtracking algorithm to solve the knapsack problem.

(b) Which technique is more efficient to solve the knapsack problem:
backtracking or dynamic programming? Explain.

13.15. Give a backtracking algorithm to solve the money change problem de-
fined in Exercise 7.30.

13.16. Apply the algorithm in Exercise 13.15 for the money change problem on
the instance in Exercise 7.31.

13.17. Give a backtracking algorithm to solve the assignment problem defined
as follows. Given n employees to be assigned to n jobs such that the cost
of assigning the ith person to the jth job is ci,j , find an assignment that
minimizes the total cost. Assume that the cost is nonnegative, that is,
ci,j ≥ 0 for 1 ≤ i, j ≤ n.

13.18. Modify the solution of the instance of the traveling salesman problem
given in Sec. 13.5 so that it results in fewer node splittings.

13.19. Apply the branch-and-bound algorithm for the traveling salesman

problem discussed in Sec. 13.5 on the instance







∞ 5 2 10
2 ∞ 5 12
3 7 ∞ 5
8 2 4 ∞







.

13.20. Consider again the knapsack problem defined in Sec. 7.6. Use branch
and bound and a suitable lower bound to solve the instance of this prob-
lem in Example 7.6.

Bibliographic notes 369

13.21. Carry out a branch-and-bound procedure to solve the following instance
of the assignment problem defined in Exercise 13.17. There are four
employees and four jobs. The cost function is represented by the ma-
trix below. In this matrix, row i corresponds to the ith employee, and
column j corresponds to the jth job.







3 5 2 4
6 7 5 3
3 7 4 5
8 5 4 6







.

13.7 Bibliographic notes

There are several books that cover backtracking in some detail. These

include Brassard and Bratley (1988), Horowitz and Sahni (1978), Reingold,

Nievergelt and Deo (1977). It is also described in Golomb and Brumert

(1965). Techniques for analyzing its efficiency are given in Knuth (1975).

The recursive form of backtracking was used by Tarjan (1972) in various

graph algorithms. Branch-and-bound techniques have been successfully

used in optimization problems since the late 1950s. Many of the diverse

applications are outlined in the survey paper by Lawler and Wood (1966).

The approach to solve the traveling salesman problem in this chapter

is due to Little, Murty, Sweeney and Karel (1963). Another technique to

solve the traveling salesman problem is described in the survey paper

by Bellmore and Nemhauser (1968).

